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Abstract.
Background: Alzheimer’s disease (AD) is a common neurodegenerative disease and mild cognitive impairment (MCI) is
considered as the prodromal stage of AD. Previous studies showed that changes in the neurotrophin signaling pathway could
lead to cognitive decline in AD. However, the association of single nucleotide polymorphisms (SNPs) in genes that are
involved in this pathway with AD progression from MCI remains unclear.
Objective: We investigated the associations between SNPs involved in the neurotrophin signaling pathway with AD pro-
gression.
Methods: We performed single-locus analysis to identify neurotrophin-signaling-related SNPs associated with the AD pro-
gression using 767 patients from the Alzheimer’s Disease Neuroimaging Initiative study and 1,373 patients from the National
Alzheimer’s Coordinating Center study. We constructed polygenic risk scores (PRSs) using the identified independent
non-APOE SNPs and evaluated its prediction performance on AD progression.

1Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (https://adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implemen-
tation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of

ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

∗Correspondence to: Sheng Luo, Department of Biostatis-
tics and Bioinformatics, Duke University School of Medicine,
Durham, NC. Durham, NC 77030, USA. Tel.: +1 919 668 8038;
Fax: +1 919 668 8038; E-mail: sheng.luo@duke.edu.

ISSN 1387-2877/$35.00 © 2022 – IOS Press. All rights reserved.

CORRECTED P
ROOF

https://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:sheng.luo@duke.edu


2 H. Li et al. / SNPs in Neurotrophin Pathway and MCI to AD Progression

Results: We identified 25 SNPs significantly associated with AD progression with Bayesian false-discovery probability
≤0.8. Based on the linkage disequilibrium clumping and expression quantitative trait loci analysis, we found 6 potentially
functional SNPs that were associated with AD progression independently. The PRS analysis quantified the combined effects
of these SNPs on longitudinal cognitive assessments and biomarkers from cerebrospinal fluid and neuroimaging. The addition
of PRSs to the prediction model for 3-year progression to AD from MCI significantly increased the predictive accuracy.
Conclusion: Genetic variants in the specific genes of the neurotrophin signaling pathway are predictors of AD progression.
eQTL analysis supports that these SNPs regulate expression of key genes involved in the neurotrophin signaling pathway.

Keywords: Mild cognitive impairment, neurotrophins, single nucleotide polymorphism, survival analysis

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disease characterized by memory loss and progres-
sive cognitive impairment, currently without any
efficient ways to cure, prevent, or significantly slow
down its progression [1, 2]. AD, as the top tenth
leading causes of death in the United States in
2020, accounted for approximately 60–80% cases
of dementia [3, 4]. Current studies have shown that
genetic risk factors play a main role in AD, which
accounts approximately 56–79% AD risk among the
late-onset AD patients (onset ≥65 years old), and
90% risk among the early-onset AD patients (onset
<65 years old) [5, 6]. Also, the single nucleotide poly-
morphism (SNP)-based heritability can account for
24–53% among the genetic risk factors [7]. There-
fore, it is important to further identify the specific
genetic factors in pivotal genes and pathways that
impact the AD, especially the progression from mild
cognitive impairment (MCI) to AD.

MCI is the transitional stage between normal aging
and AD, and each year 10–15% of patients with MCI
will progress to AD [8]. Currently, different models
have been developed to predict the conversion from
MCI to AD by applying various factors, such as cere-
brospinal fluid (CSF) biomarkers, genetic markers,
neuroimaging, and clinical markers [9–11]. However,
the studies on genetic markers are not sufficient. To
better predict the conversion from MCI to AD and
study the mechanisms of AD progression, it is neces-
sary to further identify genetic factors that may affect
the progression of AD.

The recent genome-wide association studies
(GWAS) have identified more than 40 susceptibility
loci associated with AD [12–14]. However, they only
explain a small fraction of genetic variance (∼30%)
[15], suggesting that the remaining heritability may
be attributed to common genetic variants with minor
effects that cannot reach genome-wide significance

or rare variants with large effects in other loci. Addi-
tionally, most of the GWAS-identified loci reside in
the non-coding regions of the genome, or do not
have a clear biological function [16, 17]. Hence,
identification of certain genetic variants which has
minor but detectable effects in revealing the biologi-
cal functions could provide powerful insights into the
molecular mechanism of AD progression.

Neurotrophins are a family of small proteins vital
for neuronal development, survival and plasticity, and
the common members include the nerve growth fac-
tor (NGF), brain-derived growth factors (BDNF), and
neurotrophin-3 and -4 (NT-3 and NT-4) [18, 19]. It
has been shown that higher BDNF serum levels are
associated with a slower rate of cognitive decline in
AD patients [20]. Certain neurotrophins exert their
effect on cellular signaling by interacting with Trk
tyrosine kinase receptors, and a previous study has
indicated that the Trk defects might be a marker for
the conversion from MCI to AD [21, 22]. Further-
more, changes in the neurotrophic signaling pathway
are correlated with the cholinergic dysfunction and
cognitive decline in AD [23]. However, the genetic
variants in specific loci of the candidate neurotrophin
signaling pathway and their biological functions in
the progression of MCI to AD are still unclear.

In this study, we hypothesize that the genetic vari-
ants in genes related to the neurotrophin signaling
pathway are associated with the progression from
MCI to AD. We used the available GWAS and clini-
cal data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and National Alzheimer’s Coordi-
nating Center (NACC) studies to test this hypothesis.

MATERIALS AND METHODS

Study populations

In this study, as shown in the study flowchart
(Fig. 1), the discovery stage used the dataset from
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Fig. 1. Study flowchart. 1SNP, single nucleotide polymorphisms; 2MAF, minor allele frequency; 3ADNI, Alzheimer’s Disease Neuroimaging
Initiative; 4NACC, National Alzheimer’s Coordinating Center; 5BFDP, Bayesian False Discovery Probability; 6LD, linkage disequilibrium;
7PRS, polygenic risk score; 8CSF, cerebrospinal fluid; 9eQTL, expression quantitative trait loci; 10GTEx, genotype-tissue expression; 11Other
covariates included age at baseline, gender, race, years of education, top three principal components from the genetic data and the number
of allele copies of APOE E2 and APOE E4.

the ADNI study (https://adni.loni.ucla.edu) and only
included the patients diagnosed as MCI at baseline or
during follow-up (from September 2005 to January
2020) [24, 25]. For ADNI, there were 916 participants
who were diagnosed with MCI at baseline or dur-
ing follow-up, and only 767 participants remained for
further analysis after merging the clinical and geno-
typing data. Among the 767 participants, 294 of them
were diagnosed as dementia with AD as the etiologic
diagnosis during follow-up time.

For the replication stage, we used the dataset from
the NACC study (https://naccdata.org) [24, 25]. In
this phase, the clinical and genotyping data was only
available for 1,373 participants who were diagnosed
with MCI at baseline or during follow-up period
(from June 2005 to August 2019), and 864 of them
were diagnosed as AD-type dementia during follow-
up period.

The two studies were both approved by local insti-
tutional review board (IRB), and the written informed
consent were both obtained from all the participants.
Further information about the two studies is avail-
able at the websites, http://www.adni-info.org and
https://naccdata.org.

Gene and SNP selection

The 126 genes involved in the neurotrophin signal-
ing pathway were selected using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database with
the keyword “neurotrophin” (https://www.genome.
jp/kegg/).

For the GWAS data from the ADNI study,
genotyping was performed by using the Illumina
Human610-Quad in ADNI 1 phase, Illumina Human
OmniExpress in GO phase, and Illumina Omni 2.5M
in ADNI 2 phase. We performed haplotype phasing
with the SHAPEIT and imputation with the mini-
mac4 on the Michigan imputation server (https://
imputationserver.sph.umich.edu) with the HRC
reference panel (Version r1.1 2016) consisting of
64,940 haplotypes which were predominantly Euro-
pean ancestry [26]. During imputation, we used a set
of high-quality SNPs with the following conditions:
minor allele effect (MAF) >0.01, call rate >95%, p-
value of the Hardy-Weinberg equilibrium test >10–6,
and allele frequency difference between the sample
data and the reference panel ≤0.20. The GWAS data
from NACC study was genotyped on the 10,256 sub-
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jects from NACC AD Centers 1–7 by the platforms
of Human660W-Quad v1 A, HumanOmniExpress-
12v1 A/H, and humanomniexpressexome-8v1-2 a
(https://www.alz.washington.edu/ADGC/GENOtype
.html) [25]. For the replication sample, the same
parameters and criteria for genotyping quality con-
trol (QC) and imputation as used for the discovery
sample were applied.

For discovery dataset, after removing SNPs located
on X chromosome and duplicated SNPs, we extracted
the imputation data of 17,545 SNPs involved in
neurotrophin signaling pathway with MAF ≥0.05
(considering the relative small sample size of the
discovery study) and imputation r2 ≥ 0.3 [27, 28].
Before performing the single-locus analysis for the
association between these SNPs and AD progres-
sion, we performed QC to further remove the SNPs
with missing rate in ADNI dataset ≥0.2 and located
within the 500 kb region surrounding the APOE
gene (chr19:45,409,011-45,412,650; GRCh37/hg19
assembly) [29–31]. Bayesian false discovery prob-
ability (BFDP) was applied for multiple testing
correction to decrease the potentially false-positive
results [32]. Based on the original publication, the
BFDP ≤0.8 was an appropriate and well-precedented
threshold when applying BFDP as the multiple cor-
rection method. The SNPs with BFDP ≤0.8 were
further selected to be replicated in the NACC dataset.
During the replication stage, it was essential to per-
form the same QC process as completed for the
discovery stage before the single-locus analysis.

Statistical analysis and in-silico functional
annotation

In the single-locus analysis to explore the associa-
tion between single SNPs and the AD progression,
we used the Cox proportional hazards regression
with the adjustment for various variables, including
age at baseline, gender, race, years of education, top
three principal components (PCs) from the principal
component analysis using SNPs with low linkage dis-
equilibrium (r2 < 0.1) in the GWAS data from the
ADNI or NACC studies, and the number of allele
copies of APOE E2 and APOE E4 by using the sur-
vival package in R. The progression time in years
was calculated from the baseline for participants with
MCI at baseline or the date of first diagnosis as MCI
to the date of first diagnosis as AD. The survival end-
point was the diagnosis of AD or censoring based on
the last visit date. When performing the multiple test-
ing correction with the BFDP method for the results

of the single-locus analysis, we assigned a prior prob-
ability of 0.10 to detect an HR upper bound which was
the 97.5% point of median HR given all the post-QC
SNPs. After selecting SNPs with independent effects
by the consistent directions for HR (null value is 1.0)
in both datasets and the linkage disequilibrium (LD)
clumping (pairwise r2 < 0.1), we used those SNPs to
construct the polygenic risk scores (PRSs) of the can-
didate pathway with the PLINK2 and PRSICE-2 [33,
34]. LD could describe the nonrandom association of
alleles at different loci, and using the LD-clumping
could keep the most significant SNP as an index SNP
and remove the SNPs having r2 ≥ 0.1 with the index
SNP, then repeat the process on the next significant
SNP which had not been removed until all the remain-
ing SNPs were independent with each other (i.e.,
r2 < 0.1). We used the default parameter settings of
PRSice-2 to build PRS. The standardized Z-scores of
PRSs would be applied in the further analysis.

We then constructed the time-dependent receiver
operation characteristic (ROC) curves and compared
the area under ROC curves (AUCs) to evaluate the
predictive accuracy of the model with PRS and
covariates including age, gender, race, years of educa-
tion, top three PCs from the genetic data, the number
of allele copies of APOE E2 and APOE E4 by using
the timeROC package in R, where the test of com-
paring AUC was the extension of the DeLong test
[35].

To investigate the correlation between PRSs and
the longitudinal changes of cognitive assessments,
CSF biomarkers and imaging biomarkers, we used a
linear mixed model with a random intercept, a random
slope of follow-up time, and the adjustment for age at
baseline, gender, years of education, race, top three
PCs, the number of allele copies of APOE E2 and
APOE E4 by using the nlme package in R. The cog-
nitive assessments included clinical dementia rating
scale sum of boxes (CDR-SB), Alzheimer’s Disease
Assessment Scale test (ADAS) 11/13, ADAS score
of the task 4 (ADASQ4), Mini-Mental State Exam-
ination (MMSE), Montreal Cognitive Assessment
(MOCA), and Functional Activities Questionnaire
(FAQ). The CSF biomarkers A�42, Tau, and PTau181
were log-transformed, and the imaging biomark-
ers were the percentages of the volumes of the
five regions, i.e., ventricles, hippocampus, entorhi-
nal, fusiform gyrus, and middle temporal gyrus,
in the intracerebral volume (ICV). For the NACC
study, because most of the above phenotypes were
not available, the analysis was only conducted on
the available phenotypes, MMSE and CDR-SB.
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Table 1
six independent-effect single nucleotide polymorphisms (SNPs) associated with Alzheimer’s disease (AD) progression in both Alzheimer’s

Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) studies

ADNI NACC
SNP/PRS Gene Chr Position

(hg19)
A11 A21 Beta2,3 p3 BFDP Beta2,3 p3 BFDP

rs2096224 TP73 1 3645844 G A 0.300 0.001 0.32 0.142 0.012 0.64
rs173703 PIK3R1 5 67547326 G A 0.239 0.035 0.80 0.142 0.015 0.66
rs13167294 PIK3R1 5 67555580 A C –0.202 0.031 0.77 –0.117 0.038 0.78
rs8006462 CALM1 14 90878676 C T 0.197 0.028 0.76 0.138 0.009 0.59
rs4369658 PLCG2 16 81943393 C T 0.183 0.036 0.78 0.112 0.026 0.74
rs4073828 PLCG2 16 81970495 A G –0.182 0.029 0.75 –0.177 <0.01 0.13
PRS 0.343 2.50E-08 0.200 5.69E-09
1A1 = effect allele, A2 = reference allele. 2Beta is log (HR). 3Adjusted for age, sex, years of education, race, the top 3 PCs, the copy numbers
of APOE E2, and E4.

All the above analyses were performed using the
R (version 4.2.0) if not specified otherwise. The
details of the ADNI MR and PET imaging proto-
cols are listed on the ADNI website (https://adni.loni.
usc.edu/methods/mri-tool/mri-analysis; https://adni.
loni.usc.edu/methods/pet-analysis-method). Briefly,
the MRI data were acquired on 1.5T or 3T MRI
scanners, and volumes of the region of interests
(ROIs) were reconstructed through automatic image
processing pipeline of the Freesurfer software. PET
data were acquired on multiple instruments of vary-
ing resolution. The uptakes of PIB, AV-45, and
FDG were measured using the standardized uptake
value ratios and averaged across core ROIs. Finally,
to identify the possibly biological functions of the
independent-effect SNPs, we performed the in silico
functional annotation by expression quantitative trait
loci (eQTL) given the data from the Genotype-Tissue
Expression (GTEx) projects [36].

RESULTS

Characteristics of the study populations

The overall flowchart of this study is shown
in Fig. 1. The distributions of the demographic
and clinical variables in the ADNI dataset and the
NACC dataset are in Supplementary Tables 1 and 2,
respectively. When performing the Cox proportional
hazards regression on these variables respectively, we
found that, in the ADNI dataset, only baseline age
and the number of APOE E2 and E4 alleles were
significantly associated with AD progression for the
patients with MCI. Whereas, in the NACC dataset,
we found that race and the number of APOE E2
and E4 alleles were significantly associated with AD
progression for the patients with MCI.

Association between the SNPs involved in the
neurotrophin signaling pathway and AD
progression

Before using the Cox proportional hazards model
to investigate the association between the SNPs of the
candidate pathway and AD progression, we needed to
complete the QC process where we removed 2 SNPs
with missing rate ≥0.2. For the discovery stage with
ADNI dataset, we found 911 SNPs with p ≤ 0.05 and
646 of them with BFDP ≤0.8 and the overall associ-
ation results were show in Supplementary Figure 1.

For replication stage with the NACC dataset, we
independently performed the single-locus analysis by
using the Cox proportional hazards regression given
the 646 SNPs identified in the discovery stage, and
found 26 SNPs with BFDP ≤0.8. After further com-
paring the directions of HR with null value equaling
to 1 in the results of the two stages, we found there
were 25 SNPs were successfully replicated (Supple-
mentary Table 3).

Based on the LD clumping, we selected 6 SNPs
with independent effects on AD progression. The
association results of the 6 SNPs for the two stages
can be found in Table 1. The variant alleles of the two
SNPs (i.e., rs13167294 in PIK3R1 and rs4073828 in
PLCG2) were associated with slower AD progres-
sion from MCI in both the ADNI and NACC studies;
while the variant allele carriers of the four other
SNPs (i.e., rs2096224 in TP73, rs173703 in PIK3R1,
rs8006462 in CALM1, and rs4369658 in PLCG2)
showed faster AD progression in the two studies. It
should be noted that there were two SNPs located
in PLCG2, where five variants had been reported to
be significantly associated with AD by the GWAS
(https://www.ebi.ac.uk/gwas/efotraits/MONDO 000
4975) [37–39]. Given Supplementary Table 4,
however, we could find that the two variants we
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Table 2
Performance of models without/with AD PRS

constructed with the identified 6 SNPs

Model PRS
AUC p

ADNI dataset
Non-PRS model1 0.682
PRS model2 0.720 0.0033

NACC dataset
Non-PRS model1 0.586
PRS model2 0.609 0.0123

1The model including age, sex, education, race, the
top 3 PCs, the copy numbers of APOE E2, and E4.
2The model including age, sex, education, race,
the top 3 PCs, the copy numbers of APOE E2,
APOE E4 and PRS. 3Results of PRS model versus
non-PRS model by using the function of timeROC
package, as the extension of DeLong test.

identified in PLCG2 did not have LD with the
five known variants with pairwise r2 ≤ 0.1, which
presented the effect of the two identified SNPs on
AD progression was not due to LD.

Association between PRS and AD progression

To investigate the combined effect of the identi-
fied SNPs on AD progression, we constructed PRS
using the 6 SNPs and tested their association with
the progression from MCI to AD. The effect sizes
of the SNPs during the PRS construction, shown in

Supplementary Table 3, were from the meta-analysis
results of the ADNI and the NACC dataset [40]. As
shown in Table 1, we found the PRSs had statistically-
significant and consistent (same direction) effects
supporting the acceleration of the AD progression in
both the ADNI and NACC dataset (both p < 10−7).

To evaluate the predictive accuracy of different
models, we applied the time-dependent ROC anal-
ysis and obtained the corresponding AUCs for the
3-year survival to lack of progression from MCI to
AD. As shown in Table 2 and Fig. 2, after adding the
PRS into an initial model that included demographic
variables and APOE statuses, the time-dependent
AUC increased to 0.720 from 0.682 in the ADNI
dataset, and it significantly improved the predic-
tion performance of the model at the 3-year survival
of AD-progression (p = 0.003). Also in the NACC
dataset, the addition of PRS to the prediction model
of 3-year survival of AD-progression significantly
increased from 0.586 to 0.609 (p = 0.012).

Moreover, we also investigated the association
between the PRSs and longitudinal changes of
cognitive abilities, CSF biomarkers and imaging
biomarkers adjusted for age at baseline, sex, years of
education, race, top three PCs, and the allele copies
of APOE E4 and APOE E2. As shown in Tables 3
and 4, there were significant associations between the
ADNI PRS and worse cognitive performance (with
higher values of the ADAS11, ADAS13, ADASQ4,

Fig. 2. Time-dependent ROC curves for different models in ADNI and NACC dataset. A) Patients in the ADNI dataset; B) Patients in the
NACC dataset. 1. The non-PRS model including age, sex, education, race, the top 3 PCs, the copy numbers of APOE E2, and E4. 2. The
PRS model including age, sex, education, race, the top 3 PCs, the copy numbers of APOE E2, APOE E4, and PRS.
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Table 3
Association results of PRS and different markers in ADNI dataset

Phenotype ADNI-PRS
#Subjects #Observations beta1 se1 p1

Cognitive assessments
CDR-SB 767 3,960 0.050 0.032 0.115
ADAS11 767 3,988 0.492 0.152 0.001
ADAS13 767 3,966 0.826 0.226 <0.001
ADASQ4 767 3,993 0.333 0.084 <0.001
MMSE 767 3,993 –0.149 0.063 0.018
MOCA 513 2,403 –0.144 0.124 0.245
FAQ 767 3,956 0.204 0.134 0.127

CSF biomarkers
ABETA2 543 960 –0.034 0.018 0.059
tau2 543 958 0.042 0.019 0.028
Ptau1812 543 959 0.036 0.017 0.034

Imaging biomarkers
Ventricles3 738 2,916 <0.001 0.039 0.981
Hippocampus3 723 2,624 –0.010 0.003 <0.001
Entorhinal3 705 2,510 –0.005 0.002 0.008
Fusiform3 705 2,510 –0.003 0.006 0.593
MidTemp3 705 2,510 –0.018 0.006 0.005

1Adjusted for age at baseline, sex, years of education, race, top three PCs, and the allele copies
of APOE E4 and APOE E2. 2Log-transformed. 3These dependent variables were expressed as the
percentages to intracranial volume.

Table 4
Association results of PRS and different markers in NACC dataset

Phenotype NACC-PRS
#Subjects #Observations beta1 se1 p1

Cognitive assessments
CDR-SB 1373 5,270 0.048 0.033 0.155
MMSE 1239 4,329 –0.031 0.063 0.627
1Adjusted for age at baseline, sex, years of education, race, top three PCs, and the allele copies of
APOE E4 and APOE E2.

and lower value of MMSE), increased CSF levels
of the Tau and PTau181 level, decreased CSF A�
level, and reduced volumes of the hippocampus and
entorhinal regions. However, the association between
the PRS and MMSE decline was not significant in the
NACC dataset (p = 0.671).

Functional annotation of the identified SNPs

The results of eQTL analysis by GTEx
(https://gtexportal.org/home/) for the identified
SNPs with independent effects are reported in
Supplementary Figure 2. We found that the TP73
rs2096224 G allele was significantly associated with
a lower mRNA expression level of TP73 in both the
brain-cortex (n = 205) and brain-amygdala (n = 129)
tissues. And the PLCG2 rs4369658 C allele was
significantly associated with a decreased mRNA

expression level of PLCG2 in the brain-amygdala
(n = 129), brain-hippocampus (n = 165), brain-
anterior cingulate cortex (n = 147), brain-substantia
nigra (n = 114), and brain-cerebellum (n = 209)
tissues. The other 4 SNPs did not show significant
association with mRNA expression levels in the 10
normal brain tissues.

DISCUSSION

In this study, we identified six SNPs with indepen-
dent effects in genes that regulate the neurotrophin
signaling pathway that are associated with the pro-
gression from MCI to AD using the ADNI and
NACC datasets. Based on the analysis of PRSs,
we quantified the combined effects of the 6 iden-
tified SNPs on AD progression, and longitudinal
changes of cognitive performance and AD-related
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biomarkers from CSF and imaging. Moreover, the
addition of the neurotrophin-based PRS to the basic
prediction model derived from demographic and clin-
ical data significantly increased the model predictive
accuracy.

TP73, located on chromosome 1, encodes the p73
transcription factor, Previous studies indicated that
p73 protein was essential for normal development and
survival of neurons, as well as preventing neurode-
generation [41–43]. Also, several studies revealed
that p73 haploinsufficiency could increase the depo-
sition of tau aggregates which is a hallmark of AD
pathology [42–44]. In our study, the variant allele G
of SNP rs2096224 was associated with increased risk
of AD progression and decreased mRNA expression
level in the brain tissues. Such results were consistent
with previous findings on TP73 functions, which indi-
cated that the rs2096224 was possibly associated with
faster progression from MCI to AD by decreasing the
mRNA expression level of TP73.

We also found the C allele of the SNP rs4369658
has significant association with faster AD progression
and decreased mRNA expression level of PLCG2 in
the brain tissue. PLCG2 encodes phospholipase C-
�2 (PLC �2), which could regulate the inflammatory
response and be selectively expressed by microglia
in the brain [45]. A recent study indicated the activa-
tion of PLC �2 was a potentially therapeutic method
for AD [46]. Even though previously GWAS has
reported five AD-associated variants resided in the
PLCG2 region, we found the two SNPs rs4369658
C>T and rs4073828 A>G in this study did not have
linkage disequilibrium with the reported five GWAS
SNPs, which indicated their effect on AD progres-
sion were possibly due to an independent biological
regulatory function rather than the genetic linkage to
the GWAS tagging SNPs. The two SNPs rs173703
G>A and rs13167294 A>C located in the PIK3R1,
which encodes PI3K catalytic subunit p85α, and was
potentially involved in AD progression and the treat-
ment target of patients with AD [47]. But none of
the two SNPs were associated with mRNA expres-
sion levels in the brain tissue in the GTEx projects.
Also, there was no eQTL evidence for the two
other SNPs CALM1 rs8006462 C>T and PLCG2
rs4073828 A>G. CALM1 is related to the tau phos-
phorylation and the accumulation of phosphorylated
tau is also a hallmark of AD pathology [48, 49].
Therefore, it was possible that these SNPs affected the
AD progression by a biological mechanism indepen-
dent of gene expression, which needed to be further
investigated.

Additionally, all the six identified genetic variants
had not been previously reported in any AD study.
Except the PIK3R1 rs13167294 A>C which had been
reported to be associated with poor survival in a pan-
creatic cancer study [50], none of the other five SNPs
had been found in any non-AD study. The limitations
in the present study included that the NACC dataset
lacked most of the variables used in longitudinal anal-
ysis for ADNI dataset, and some of our findings
from the longitudinal analysis of cognitive assess-
ment, CSF biomarkers, and imaging markers in the
ADNI dataset need to be replicated in future studies.
And even though we conducted the eQTL analysis,
the underlying causal molecular mechanisms associ-
ated with the progression from MCI to AD are still
unclear and need to be further investigated.

In conclusion, we identified 6 novel SNPs (i.e.,
TP73 rs2096224 G>A, PIK3R1 rs173703 G>A and
rs13167294 A>C, CALM1 rs8006462 C>T, PLCG2
rs4369658 C>T, and rs4073828 A>G) with indepen-
dent effects and potential biological function that
were significantly associated with AD progression
and had not been previously reported in any AD study.
Based on the eQTL results, we also provide functional
gene expression regulatory evidence for two identi-
fied SNPs. It is necessary to further replicate these
findings and perform more functional analysis for
these identified SNPs to uncover the biological mech-
anisms underlying the observed associations with AD
progression.
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